Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Sci Adv ; 10(8): eadj9395, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381832

ABSTRACT

It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.


Subject(s)
Biodiversity
2.
Trends Ecol Evol ; 38(12): 1177-1188, 2023 12.
Article in English | MEDLINE | ID: mdl-37661519

ABSTRACT

We explore how integrating behavioural ecology and macroecology can provide fundamental new insight into both fields, with particular relevance for understanding ecological responses to rapid environmental change. We outline the field of macrobehaviour, which aims to unite these disciplines explicitly, and highlight examples of research in this space. Macrobehaviour can be envisaged as a spectrum, where behavioural ecologists and macroecologists use new data and borrow tools and approaches from one another. At the heart of this spectrum, interdisciplinary research considers how selection in the context of large-scale factors can lead to systematic patterns in behavioural variation across space, time, and taxa, and in turn, influence macroecological patterns and processes. Macrobehaviour has the potential to enhance forecasts of future biodiversity change.


Subject(s)
Biodiversity , Ecology , Forecasting , Ecosystem
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1889): 20220397, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37718600

ABSTRACT

It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture. First, we define 'cultural adaptation to climate change' as a mechanistic process of population-level cultural change. We argue this definition enables rigorous comparisons, yields testable hypotheses from mathematical theory and distinguishes adaptive change, non-adaptive change and desirable policy outcomes. Next, we develop an operational approach to identify 'cultural adaptation to climate change' based on established empirical criteria. We apply this approach to data on crop choices and the use of cover crops between 2008 and 2021 from the United States. We find evidence that crop choices are adapting to local trends in two separate climate variables in some regions of the USA. But evidence suggests that cover cropping may be adapting more to the economic environment than climatic conditions. Further research is needed to characterize the process of cultural adaptation, particularly the routes and mechanisms of cultural transmission. Furthermore, climate adaptation policy could benefit from research on factors that differentiate regions exhibiting adaptive trends in crop choice from those that do not. This article is part of the theme issue 'Climate change adaptation needs a science of culture'.


Subject(s)
Climate Change , Cultural Evolution , Agriculture , Biological Evolution , Crops, Agricultural
4.
Science ; 381(6662): 1067-1071, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37676959

ABSTRACT

Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.


Subject(s)
Biomass , Body Size , Animals , Phenotype , Time Factors
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220199, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37246380

ABSTRACT

Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Subject(s)
Biodiversity , Ecosystem , Humans
6.
Nat Commun ; 14(1): 1463, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927847

ABSTRACT

While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.


Subject(s)
Ecosystem , Models, Biological , Humans , Time Factors , Fresh Water
8.
Nature ; 610(7932): 457-458, 2022 10.
Article in English | MEDLINE | ID: mdl-36224364
9.
Ecol Evol ; 12(8): e9196, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35991281

ABSTRACT

Patterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e., more-individual effects) and changes in the regional species abundance distribution (SAD). Rarefaction curves can provide a tool to partition these sources of variation on diversity, but first must be converted to a common unit of measurement. Here, we partition species diversity gradients into components of the SAD and abundance using the effective number of species (ENS) transformation of the individual-based rarefaction curve. Because the ENS curve is unconstrained by sample size, it can act as a standardized unit of measurement when comparing effect sizes among different components of biodiversity change. We illustrate the utility of the approach using two data sets spanning latitudinal diversity gradients in trees and marine reef fish and find contrasting results. Whereas the diversity gradient of fish was mostly associated with variation in abundance (86%), the tree diversity gradient was mostly associated with variation in the SAD (59%). These results suggest that local fish diversity may be limited by energy through the more-individuals effect, while species pool effects are the larger determinant of tree diversity. We suggest that the framework of the ENS-curve has the potential to quantify the underlying factors influencing most aspects of diversity change.

10.
Nat Commun ; 13(1): 3940, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803946

ABSTRACT

Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (~30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (~20,000-14,000 ybp). From ~10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at ~10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (~2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back ~10,000 years.


Subject(s)
Biodiversity , Extinction, Biological , Fossils , Mammals , Agriculture , Animals , Body Size , Ecosystem , Humans , North America , Population Growth
11.
Ecology ; 103(12): e3820, 2022 12.
Article in English | MEDLINE | ID: mdl-35869831

ABSTRACT

Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site-to-site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site-to-site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene.


Subject(s)
Biodiversity , Ecosystem , Humans
12.
R Soc Open Sci ; 9(3): 211743, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35345431

ABSTRACT

Social change in any society entails changes in both behaviours and institutions. We model a group-structured society in which the transmission of individual behaviour occurs in parallel with the selection of group-level institutions. We consider a cooperative behaviour that generates collective benefits for groups but does not spread between individuals on its own. Groups exhibit institutions that increase the diffusion of the behaviour within the group, but also incur a group cost. Groups adopt institutions in proportion to their fitness. Finally, the behaviour may also spread globally. We find that behaviour and institutions can be mutually reinforcing. But the model also generates behavioural source-sink dynamics when behaviour generated in institutionalized groups spreads to non-institutionalized groups and boosts their fitness. Consequently, the global diffusion of group-beneficial behaviour creates a pattern of institutional free-riding that limits the evolution of group-beneficial institutions. Our model suggests that, in a group-structured society, large-scale beneficial social change can be best achieved when the relevant behaviour and institutions remain correlated.

17.
Glob Chang Biol ; 28(1): 46-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34669982

ABSTRACT

The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.


Subject(s)
Biodiversity , Fishes , Animals , Ecosystem , Plants
18.
Ecol Lett ; 24(9): 1988-2009, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34015168

ABSTRACT

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.


Subject(s)
Biodiversity , Ecosystem , Ecology , Phenotype , Research Design
20.
Ecol Appl ; 31(2): e02239, 2021 03.
Article in English | MEDLINE | ID: mdl-33074572

ABSTRACT

While invasive plant distributions are relatively well known in the eastern United States, temporal changes in species distributions and interactions among species have received little attention. Managers are therefore left to make management decisions without knowing which species pose the greatest threats based on their ability to spread, persist and outcompete other invasive species. To fill this gap, we used the U.S. National Park Service's Inventory and Monitoring Program data collected from over 1,400 permanent forest plots spanning 12 yr and covering 39 eastern national parks to analyze invasive plant trends. We analyzed trends in abundance at multiple scales, including plot frequency, quadrat frequency, and average quadrat cover. We examined trends overall, by functional group, and by species. We detected considerably more increasing than decreasing trends in invasive plant abundance. In fact, 80% of the parks in our study had at least one significant increasing trend in invasive abundance over time. Where detected, significant negative trends tended to be herbaceous or graminoid species. However, these declines were often countered by roughly equivalent increases in invasive shrubs over the same time period, and we only detected overall declines in invasive abundance in two parks in our study. Present in over 30% of plots and responsible for the steepest and greatest number of significant increases, Japanese stiltgrass (Microstegium vimineum) was the most aggressive invader in our study and is a high management priority. Invasive shrubs, especially Japanese barberry (Berberis thunbergii), Japanese honeysuckle (Lonicera japonica), multiflora rose (Rosa multiflora), and wineberry (Rubus phoenicolasius), also increased across multiple parks, and sometimes at the expense of Japanese stiltgrass. Given the added risks to human health from tick-borne diseases, invasive shrubs are a high management priority. While these findings provide critical information to managers for species prioritization, they also demonstrate the incredible management challenge that invasive plants pose in protected areas, particularly since we documented few overall declines in invasive abundance. As parks work to overcome deferred maintenance of infrastructure, our findings suggest that deferred management of natural resources, particularly invasive species, requires similar attention and long-term commitment to reverse these widespread increasing invasive trends.


Subject(s)
Ecosystem , Parks, Recreational , Humans , Introduced Species , Plants , Poaceae , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...